

Improve the Impact of Imaging Solutions on Drug Safety Evaluation

Gunnar Schütz, Bayer Healthcare, Berlin SGG Translational Safety

Non-Cinical Development – Problem Statement

- * 43% concordance between clinical trial toxicities & rodent toxicity seen across 150 compounds; 63% in non-rodents
- * Clinical toxicity predictions vary by organ system as well as species dropping to as low as 36%

Ohlsen et al., Reg Toxicol Pharmacol 2000, 32: 56-67

- * How can we guard against drug-induced injuries in the clinic but not in preclinical toxicological studies?
- * How can we advance development of good drugs showing toxicities in animals *that are not expected to be present in humans?*
- * How can we verify efficacy in preclinical <u>and</u> clinical settings?

Challenge: Systematic translation of new imaging methods

Imaging "can":

- * DCE-MRI
- * X-nucleus MRI
- * Diffusion MRI
- * MR-Spectroscopy
- Dual-Energy CT
- * Perfusions CT
- *****

Currently used parameter in the Clinic:

* RECIST

- * Gap between available technology and clinical routine
- * Vision: Implement imaging biomarkers as integral part of clinical trials and clinical routine

MR Imaging of Brain Structure and Function

- Detection of changes in anatomy at high resolution (tissue size)
- * Functional information on tissues (perfusion, oxygenation, diffusion, spectroscopy)
- * Possibility to perform **longitudinal** studies (reduces animal number)

Rodent brain tissue MRI compared to histology

Calabrese et al. Neuroimage 2013, 67:375-384

Rodent brain spectroscopy in a huntington's disease model

Journal of Neurochemistry 2006, 100 (5):1397-1406

MR Imaging of Kidney Function

- * Detection of changes in contrast agent excretion kinetics
- * Functional information: oxygenation
- *** Longitudinal** study (reduces animal number)

CT of rodent kidney

lodixanol 320

lopromide 300

iso-osmolar

low-osmolar

Blood oxygenation level dependent (BOLD) MRI of rodent kidney

Lenhard et al., Invest. Radiol. 2013, 48(4):175-182

* BOLD-MRI is considered one of the earliest biomarkers for kidney injury

Validation of Diagnostic Imaging Techniques for Their Use in Clinical Drug Development

- * We need technically, biologically and clinically validated imaging biomarker techniques
- * What is needed for validation?
 - * Technical standardization of imaging method & procedure
 - * Technical standardization of image evaluation and read-out
 - * Pre-clinical validation against currently accepted measures
 - * Prove robustness and informative value in animal disease models
 - * Translation to patients; confirm robustness and informative value
- * Need for public private partnership to establish and extend the basis for imaging biomarker utilization in patients

Value of Clinically Validated Imaging Biomarker

- * For patients:
 - * Improved basis for therapy decision
- * For pharmaceutical industry:
 - * Perform longitudinal studies: reduce number of animals used
 - * Identify potential safety/efficacy issues earlier: enable earlier project decision (avoid respective late phase investments)
- * For imaging equipment vendors
 - * Intensified use of imaging in pharmaceutical development
 - * Enable use of imaging biomarker as integral part of clinical routine
- * For software providers
 - * Novel qualified tools for data analysis and reporting
 - * Image data analysis across patients for procedure refinement

